机器学习 | 模型评估与选择之评估方法
基本概念错误率:分类错误的样本占样本总数的比例精度:分类正确的样本占样本总数的比例,即精度=1-错误率。过拟合:由于学习能力过于强大,以至于把训练样本所包含的不太一般的特性都学到了。欠拟合:由于学习能力太低下,以至于把训练样本所包含一般的特性没学好。对数据集D进行适当的处理,从中产生训练集S和测试集T。<div align=center></div><div alig
基本概念错误率:分类错误的样本占样本总数的比例精度:分类正确的样本占样本总数的比例,即精度=1-错误率。过拟合:由于学习能力过于强大,以至于把训练样本所包含的不太一般的特性都学到了。欠拟合:由于学习能力太低下,以至于把训练样本所包含一般的特性没学好。对数据集D进行适当的处理,从中产生训练集S和测试集T。<div align=center></div><div alig