机器学习 | 线性模型之Logistic回归
对数几率回归:(Logistic回归)解决二分类问题<div align=center></div> 单位阶跃函数:(不连续、理想状态)<div align=center></div><div align=center>y代表输出标记,z代表预测值</div>预测值大于零就判为正例,小于零就判为反例,预测值为临界值零
对数几率回归:(Logistic回归)解决二分类问题<div align=center></div> 单位阶跃函数:(不连续、理想状态)<div align=center></div><div align=center>y代表输出标记,z代表预测值</div>预测值大于零就判为正例,小于零就判为反例,预测值为临界值零