机器学习 | 决策树 实践篇

问题基于表中编号为1、2、3、6、7、9、10、14、15、16、17的11个样本的色泽、根蒂、敲声、文理特性构建决策树,编程实现。<div align=center></div>代码实现#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 14 21:45:

- 阅读全文 -

机器学习 | 线性回归模型拟合bodyfat数据代码实现及泛化误差评估

线性回归模型来拟合bodyfat数据,数据集介绍可阅读:https://www.mathworks.com/help/nnet/examples/body-fat-estimation.html在matlab中,在命令行中输入[X,Y] = bodyfat_dataset; 即可获得一个拥有13个属性,252个样本的数据集。使用前200个样本来获得模型,并写出你所获得的模型。使用后52个样本做测试

- 阅读全文 -

socket编程 | windows下socket编程 实践篇

socket概述socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用已实现进程在网络中通信。socket起源于UNIX,在Unix一切皆文件哲学的思想下,socket是一种"打开—读/写—关闭"模式的实现,服务器和客户端各自维护一个"文件",在建立连接打开后,可以向自己文件写入内容供对方读取或者读取对方内容,通讯结束时关闭文件。接口详解soc

- 阅读全文 -

机器学习 | 简单数据拟合及实现 实践篇

数据X=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]Y=[2.94,4.53,5.96,7.88,9.02,10.94,12.14,13.96,14.74,16.68,17.79,19.67,21.20,22.07,23.75,25.22,27.17,28.84,29.84,31.78]拟合直线图<div align=center&

- 阅读全文 -

机器学习 | k-近邻算法原理及代码实现

k-近邻算法原理存在一组带标签的训练样本集,输入未带标签的新数据,将新数据每个特征属性与样本集中数据对应的特征属性进性比较,取k个最相似数据中出现次数最多的分类,做为新数据的分类。**代码实现from numpy import * import operator def createDataSet(): group = array ([[1.0,1.1],[1.0,1.0],[0,0],

- 阅读全文 -

机器学习 | 模型评估与选择之性能度量

性能度量是衡量模型泛化能力的评价标准,反映了任务需求;使用不同的性能度量往往会导致不同的评判结果。回归任务最常用的性能度量是“均方误差”:<div align=center></div>一般式子对于数据分布D和概率密度函数p(.)均方误差可描述成:<div align=center></div>对于分类任务,错误率和精度是最常用的两种性能度量:错误率

- 阅读全文 -

机器学习 | 模型评估与选择之评估方法

基本概念错误率:分类错误的样本占样本总数的比例精度:分类正确的样本占样本总数的比例,即精度=1-错误率。过拟合:由于学习能力过于强大,以至于把训练样本所包含的不太一般的特性都学到了。欠拟合:由于学习能力太低下,以至于把训练样本所包含一般的特性没学好。对数据集D进行适当的处理,从中产生训练集S和测试集T。<div align=center></div><div alig

- 阅读全文 -

嵌入式 | ARM嵌入式微处理器核心

ARM内核是一种32位RISC微处理器,具备功耗低、性价比低、代码密度高等三大特色。ARM处理器具有RISC体系结构的典型特征,同时具以下特点:  在每条数据处理指令当中,都控制算术逻辑单元(ALU)和移位器,以使ALU和移位器获得最大的利用概率。  自动递增和自动递减的寻址模式,以优化程序中的循环。  同时Load和Store多条指令,以增加数据吞吐量。&em

- 阅读全文 -

嵌入式 | 嵌入式系统基本的介绍

嵌入式系统总线分类嵌入式微处理器的体系结构 注:两种指令集影响指令密度,硬件复杂度。 #### 两种指令集详细对比 续上表: PC机功能集合在主板上,嵌入式芯片功能集合在芯片上。AHB(高速总线),APB(低速总线),DSP(数据信号处理)。

- 阅读全文 -