机器学习 | 决策树 实践篇
问题基于表中编号为1、2、3、6、7、9、10、14、15、16、17的11个样本的色泽、根蒂、敲声、文理特性构建决策树,编程实现。<div align=center></div>代码实现#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 14 21:45:
问题基于表中编号为1、2、3、6、7、9、10、14、15、16、17的11个样本的色泽、根蒂、敲声、文理特性构建决策树,编程实现。<div align=center></div>代码实现#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 14 21:45:
线性回归模型来拟合bodyfat数据,数据集介绍可阅读:https://www.mathworks.com/help/nnet/examples/body-fat-estimation.html在matlab中,在命令行中输入[X,Y] = bodyfat_dataset; 即可获得一个拥有13个属性,252个样本的数据集。使用前200个样本来获得模型,并写出你所获得的模型。使用后52个样本做测试